.theorem-icon{
    width: 45px;
    height: 45px;
    background-size: contain;
    display:inline-block;
}
.ANG_BISECTOR_FROM_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(0,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_DIAGONALS{background: url('sprite_theorems.svg#svgView(viewBox(0,0,45,45))') no-repeat;}
.CHORD_MIDPOINT_FROM_LINE_THROUGH_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(45,0,45,45))') no-repeat;}
.CHORD_BISECTOR_FROM_LINE_THROUGH_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(45,0,45,45))') no-repeat;}
.CONGRUENT_CHORD_PARTS_FROM_LINE_THROUGH_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(45,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_ALTERNATE_EXTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(90,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_ALTERNATE_INTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(135,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_CONGRUENT_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(180,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_CORRESPONDING{background: url('sprite_theorems.svg#svgView(viewBox(225,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_ISOSCELES_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(270,0,45,45))') no-repeat;}
.CONGRUENT_ANGLES_FROM_PARALLELOGRAM{background: url('sprite_theorems.svg#svgView(viewBox(315,0,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_VERTICAL{background: url('sprite_theorems.svg#svgView(viewBox(360,0,45,45))') no-repeat;}
.CONGRUENT_CHORDS_FROM_EQUAL_DIST ANCES{background: url('sprite_theorems.svg#svgView(viewBox(405,0,45,45))') no-repeat;}
.CONGRUENT_COMPLEMENTARY{background: url('sprite_theorems.svg#svgView(viewBox(450,0,45,45))') no-repeat;}
.CONGRUENT_DIAGONALS_FROM_ISOSCELES_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(495,0,45,45))') no-repeat;}
.CONGRUENT_DIAGONALS_FROM_RECTANGLE{background: url('sprite_theorems.svg#svgView(viewBox(540,0,45,45))') no-repeat;}
.CONGRUENT_CHORDS_FROM_CONGRUENT_CENTRAL_ANG{background: url('sprite_theorems.svg#svgView(viewBox(0,45,45,45))') no-repeat;}
.CONGRUENT_RIGHT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(45,45,45,45))') no-repeat;}
.CONGRUENT_RIGHT_TRI_FROM_HL{background: url('sprite_theorems.svg#svgView(viewBox(90,45,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_OPPOSITE_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(135,45,45,45))') no-repeat;}
.CONGRUENT_SIDES_FROM_CONGRUENT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(180,45,45,45))') no-repeat;}
.CONGRUENT_STRIGHT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(225,45,45,45))') no-repeat;}
.CONGRUENT_TANGENTS_FROM_EXTERNAL_POINT{background: url('sprite_theorems.svg#svgView(viewBox(270,45,45,45))') no-repeat;}
.CONGRUENT_TRI_FROM_AAS{background: url('sprite_theorems.svg#svgView(viewBox(315,45,45,45))') no-repeat;}
.CONGRUENT_TRI_FROM_ASA{background: url('sprite_theorems.svg#svgView(viewBox(360,45,45,45))') no-repeat;}
.CONGRUENT_TRI_FROM_SAS{background: url('sprite_theorems.svg#svgView(viewBox(405,45,45,45))') no-repeat;}
.CONGRUENT_TRI_FROM_SSS{background: url('sprite_theorems.svg#svgView(viewBox(450,45,45,45))') no-repeat;}
.CONGURENT_ANG_FROM_CPCTC{background: url('sprite_theorems.svg#svgView(viewBox(495,45,45,45))') no-repeat;}
.CONGURENT_SEG_FROM_CPCTC{background: url('sprite_theorems.svg#svgView(viewBox(540,45,45,45))') no-repeat;}
.EQUAL_DISTANCES_FROM_CONGRUENT_CHORDS{background: url('sprite_theorems.svg#svgView(viewBox(0,90,45,45))') no-repeat;}
.EQUAL_RATIO_SEG_FROM_SIMILAR_TRI{background: url('sprite_theorems.svg#svgView(viewBox(45,90,45,45))') no-repeat;}
.MULTIPLE_SEG_FROM_SIMILAR_TRI{background: url('sprite_theorems.svg#svgView(viewBox(45,90,45,45))') no-repeat;}
.ISOSCELES_TRAPEZOID_FROM_CONGRUENT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(90,90,45,45))') no-repeat;}
.MIDSEGMENT_IS_HALF_BASE_INTRI{background: url('sprite_theorems.svg#svgView(viewBox(135,90,45,45))') no-repeat;}
.MIDSEGMENT_IS_PARALLEL_TOBASE_INTRI{background: url('sprite_theorems.svg#svgView(viewBox(180,90,45,45))') no-repeat;}
.PARALLEL_SEG_FROM_CORRESPONDING{background: url('sprite_theorems.svg#svgView(viewBox(225,90,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_CONGRUENT_ANGS{background: url('sprite_theorems.svg#svgView(viewBox(270,90,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_CONGRUENT_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(315,90,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_PARALLEL_AND_CONGRUENT_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(360,90,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_PARALLEL_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(405,90,45,45))') no-repeat;}
.PERPENDICULAR_TO_CHORD_FROM_LINE_THROUGH_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(450,90,45,45))') no-repeat;}
.RIGHT_ANG_TO_CHORD_FROM_LINE_THROUGH_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(450,90,45,45))') no-repeat;}
.PROPORTION_LEGS_FROM_RIGHT_TRI{background: url('sprite_theorems.svg#svgView(viewBox(495,90,45,45))') no-repeat;}
.RECTANGLE_FROM_CONGRUENT_DIAGONALS_IN_PARALLELOGRAM{background: url('sprite_theorems.svg#svgView(viewBox(540,90,45,45))') no-repeat;}
.PROPORTION_SEG_FROM_ALTITUDE_ONH YP{background: url('sprite_theorems.svg#svgView(viewBox(0,135,45,45))') no-repeat;}
.RECTANGLE_FROM_RIGHT_ANG_IN_PARALLELOGRAM{background: url('sprite_theorems.svg#svgView(viewBox(45,135,45,45))') no-repeat;}
.RECTANGLE_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(90,135,45,45))') no-repeat;}
.RHOMBUS_FROM_CONSECUTIVE_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(135,135,45,45))') no-repeat;}
.RHOMBUS_FROM_ANGLE_BISECTORS{background: url('sprite_theorems.svg#svgView(viewBox(180,135,45,45))') no-repeat;}
.RHOMBUS_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(225,135,45,45))') no-repeat;}
.RIGHT_ANG_FROM_DIAMETER{background: url('sprite_theorems.svg#svgView(viewBox(270,135,45,45))') no-repeat;}
.RIGHT_ANG_FROM_TANGENT{background: url('sprite_theorems.svg#svgView(viewBox(315,135,45,45))') no-repeat;}
.PARALLEL_OPPOSITE_SIDES_FROM_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(360,135,45,45))') no-repeat;}
.SIMILAR_TRI_FROM_AA{background: url('sprite_theorems.svg#svgView(viewBox(405,135,45,45))') no-repeat;}
.SIMILAR_TRI_FROM_SAS{background: url('sprite_theorems.svg#svgView(viewBox(450,135,45,45))') no-repeat;}
.SIMILAR_TRI_FROM_SSS{background: url('sprite_theorems.svg#svgView(viewBox(495,135,45,45))') no-repeat;}
.SQUARE_FROM_RECTANGLE_AND_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(540,135,45,45))') no-repeat;}
.SUPPLEMENTARY_FROM_LINEAR_PAIR{background: url('sprite_theorems.svg#svgView(viewBox(0,180,45,45))') no-repeat;}
.SUPPLEMENTARY_ANG_FROM_CYCLIC_QUAD{background: url('sprite_theorems.svg#svgView(viewBox(45,180,45,45))') no-repeat;}
.SUPPLEMENTARY_ANG_FROM_ISOSCELES_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(90,180,45,45))') no-repeat;}
.SUPPLEMENTARY_ANG_FROM_SAME_SIDE_INTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(135,180,45,45))') no-repeat;}
.SUPPLEMENTARY_ANGLES_FROM_PARALLELOGRAM{background: url('sprite_theorems.svg#svgView(viewBox(180,180,45,45))') no-repeat;}
.SUM_ANG_FROM_TRIANGLE{background: url('sprite_theorems.svg#svgView(viewBox(225,180,45,45))') no-repeat;}
.BISECTOR_PART{background: url('sprite_theorems.svg#svgView(viewBox(270,180,45,45))') no-repeat;}
.CHORD_DISTANCE_FROM_PERPENDICULA R_FROM_CENTER{background: url('sprite_theorems.svg#svgView(viewBox(315,180,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_ISOCELES_TRI{background: url('sprite_theorems.svg#svgView(viewBox(360,180,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(405,180,45,45))') no-repeat;}
.CONGRUENT_LEGS_FROM_ISOSCELES_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(450,180,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_ISCOSCELES_TRI{background: url('sprite_theorems.svg#svgView(viewBox(495,180,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(540,180,45,45))') no-repeat;}
.CONGRUENT_ADJACENT_SEGMENTS_FROM_KITE{background: url('sprite_theorems.svg#svgView(viewBox(0,225,45,45))') no-repeat;}
.CONGRUENT_SIDES_FROM_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(45,225,45,45))') no-repeat;}
.CONGURENT_ANG_FROM_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(90,225,45,45))') no-repeat;}
.CONGURENT_SEG_FROM_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(135,225,45,45))') no-repeat;}
.CONGURENT_SEG_FROM_MIDPOINT{background: url('sprite_theorems.svg#svgView(viewBox(180,225,45,45))') no-repeat;}
.CONGURENT_SEG_FROM_MIDPOINT{background: url('sprite_theorems.svg#svgView(viewBox(180,225,45,45))') no-repeat;}
.MIDPOINT_FROM_CONGRUENT_SEG{background: url('sprite_theorems.svg#svgView(viewBox(180,225,45,45))') no-repeat;}
.EQUAL_MEASURES_FROM_CONGRUENT_ANGLES{background: url('sprite_theorems.svg#svgView(viewBox(225,225,45,45))') no-repeat;}
.CONGRUENT_ANGLES_FROM_EQUAL_MEASURES{background: url('sprite_theorems.svg#svgView(viewBox(225,225,45,45))') no-repeat;}
.EQUAL_MEASURES_FROM_CONGRUENT_SEG{background: url('sprite_theorems.svg#svgView(viewBox(270,225,45,45))') no-repeat;}
.CONGRUENT_SEGMENTS_FROM_EQUAL_MEASURES{background: url('sprite_theorems.svg#svgView(viewBox(270,225,45,45))') no-repeat;}
.ISOSCELES_FROM_EQUILATERAL_TRI{background: url('sprite_theorems.svg#svgView(viewBox(315,225,45,45))') no-repeat;}
.ISOSCELES_TRAPEZOID_FROM_CONGRUENT_LEGS{background: url('sprite_theorems.svg#svgView(viewBox(360,225,45,45))') no-repeat;}
.ISOSCELES_TRI_FROM_CONGRUENT_SEG{background: url('sprite_theorems.svg#svgView(viewBox(405,225,45,45))') no-repeat;}
.KITE_FROM_CONGRUENT_SEGMENTS{background: url('sprite_theorems.svg#svgView(viewBox(450,225,45,45))') no-repeat;}
.PARALLEL_FROM_PARALLEL_PARTS{background: url('sprite_theorems.svg#svgView(viewBox(495,225,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_RECTANGLE{background: url('sprite_theorems.svg#svgView(viewBox(540,225,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(0,270,45,45))') no-repeat;}
.PERPENDICULAR_FROM_ALTITUDE{background: url('sprite_theorems.svg#svgView(viewBox(45,270,45,45))') no-repeat;}
.PERPENDICULAR_FROM_PERPENDICULAR_PARTS{background: url('sprite_theorems.svg#svgView(viewBox(90,270,45,45))') no-repeat;}
.RHOMBUS_FROM_CONGRUENT_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(135,270,45,45))') no-repeat;}
.RIGHT_ANG_FROM_PERPENDICULAR{background: url('sprite_theorems.svg#svgView(viewBox(180,270,45,45))') no-repeat;}
.PERPENDICULAR_FROM_RIGHT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(180,270,45,45))') no-repeat;}
.RIGHT_ANG_FROM_SQUARE{background: url('sprite_theorems.svg#svgView(viewBox(225,270,45,45))') no-repeat;}
.RIGHT_TRIANGLE_FROM_RIGHT_ANGLE{background: url('sprite_theorems.svg#svgView(viewBox(270,270,45,45))') no-repeat;}
.ANG_BISECTOR_FROM_CONGURENT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(315,270,45,45))') no-repeat;}
.SEG_BISECTOR_FROM_CONGURENT_SEG{background: url('sprite_theorems.svg#svgView(viewBox(360,270,45,45))') no-repeat;}
.SQUARE_FROM_SIDES_AND_ANG{background: url('sprite_theorems.svg#svgView(viewBox(405,270,45,45))') no-repeat;}
.TRANSITIVE_CONGRUENT_ANGS{background: url('sprite_theorems.svg#svgView(viewBox(450,270,45,45))') no-repeat;}
.TRANSITIVE_CONGRUENT_SEG{background: url('sprite_theorems.svg#svgView(viewBox(495,270,45,45))') no-repeat;}
.TRAPEZOID_FROM_PARALLEL_SIDES{background: url('sprite_theorems.svg#svgView(viewBox(540,270,45,45))') no-repeat;}
.ISOSCELES_TRAPEZOID_FROM_DIAGONALS{background: url('sprite_theorems.svg#svgView(viewBox(0,315,45,45))') no-repeat;}
.ISOSCELES_TRI_FROM_CONGRUENT_ANG{background: url('sprite_theorems.svg#svgView(viewBox(45,315,45,45))') no-repeat;}
.PARALLEL_SEG_FROM_SAMESIDE_INTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(90,315,45,45))') no-repeat;}
.PARALLEL_SIDES_FROM_PARALLELOGRAM{background: url('sprite_theorems.svg#svgView(viewBox(135,315,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_BISECTING_DIAGONALS{background: url('sprite_theorems.svg#svgView(viewBox(180,315,45,45))') no-repeat;}
.PARALLELOGRAM_FROM_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(225,315,45,45))') no-repeat;}
.CONGRUENT_ANG_FROM_ITSELF{background: url('sprite_theorems.svg#svgView(viewBox(270,315,45,45))') no-repeat;}
.CONGRUENT_CENTRAL_ANG_FROM_CONGRUENT_CHORDS{background: url('sprite_theorems.svg#svgView(viewBox(315,315,45,45))') no-repeat;}
.CONGRUENT_INSCRIBED_ANG_FROM_SAME_CHORD{background: url('sprite_theorems.svg#svgView(viewBox(360,315,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_BISECTING_DIAGONALS{background: url('sprite_theorems.svg#svgView(viewBox(405,315,45,45))') no-repeat;}
.MIDPOINT_FROM_DIAGONAL{background: url('sprite_theorems.svg#svgView(viewBox(405,315,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_ITSELF{background: url('sprite_theorems.svg#svgView(viewBox(450,315,45,45))') no-repeat;}
.EXTERIOR_ANG_FROM_INTERIOR_ANG{background: url('sprite_theorems.svg#svgView(viewBox(495,315,45,45))') no-repeat;}
.PARALLEL_SEG_FROM_ALTERNATE_EXTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(540,315,45,45))') no-repeat;}
.PARALLEL_SEG_FROM_ALTERNATE_INTERIOR{background: url('sprite_theorems.svg#svgView(viewBox(0,360,45,45))') no-repeat;}
.PERPENDICULAR_CHORDS_FROM_DIAMETER{background: url('sprite_theorems.svg#svgView(viewBox(45,360,45,45))') no-repeat;}
.PERPENDICULAR_FROM_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(90,360,45,45))') no-repeat;}
.RIGHT_ANG_FROM_RHOMBUS{background: url('sprite_theorems.svg#svgView(viewBox(90,360,45,45))') no-repeat;}
.PERPENDICULAR_TO_RADIOUS_FROM_POINT_OF_TANGENCY{background: url('sprite_theorems.svg#svgView(viewBox(135,360,45,45))') no-repeat;}
.SEG_BISECTOR_FROM_DIAGONAL{background: url('sprite_theorems.svg#svgView(viewBox(180,360,45,45))') no-repeat;}
.CONGRUENT_SUPPLEMENTARY{background: url('sprite_theorems.svg#svgView(viewBox(270,360,45,45))') no-repeat;}
.CENTRAL_ANGLE_FROM_INSCRIBED_ANG LE{background: url('sprite_theorems.svg#svgView(viewBox(315,360,45,45))') no-repeat;}
.CONGRUENT_SEG_FROM_RADIUS{background: url('sprite_theorems.svg#svgView(viewBox(360,360,45,45))') no-repeat;}
.RIGHT_ANGLE_FROM_RECTANGLE{background: url('sprite_theorems.svg#svgView(viewBox(405,360,45,45))') no-repeat;}
.RHOMBUS_FROM_PARALLELOGRAM_WITH_PERPENDICULAR_DIAGONALS{background: url('sprite_theorems.svg#svgView(viewBox(450,360,45,45))') no-repeat;}
.EQUAL_ANG_FROM_EQUAL_MEASURES{background: url('sprite_theorems.svg#svgView(viewBox(495,360,45,45))') no-repeat;}
.EQUAL_SEG_FROM_EQUAL_MEASURES{background: url('sprite_theorems.svg#svgView(viewBox(540,360,45,45))') no-repeat;}
.ANGLE_ADDITION_POSTULATE{background: url('sprite_theorems.svg#svgView(viewBox(0,405,45,45))') no-repeat;}
.SEGMENT_ADDITION_POSTULATE{background: url('sprite_theorems.svg#svgView(viewBox(45,405,45,45))') no-repeat;}
.TRANSITIVE_PARALLEL_SEG{background: url('sprite_theorems.svg#svgView(viewBox(90,405,45,45))') no-repeat;}
.SEGMENT_SUBTRACTION_POSTULATE{background: url('sprite_theorems.svg#svgView(viewBox(135,405,45,45))') no-repeat;}
.ANGLE_SUBTRACTION_POSTULATE{background: url('sprite_theorems.svg#svgView(viewBox(180,405,45,45))') no-repeat;}
.SUPPLEMENTARY_FROM_THREE_ANGLES_ON_A_LINE{background: url('sprite_theorems.svg#svgView(viewBox(225,405,45,45))') no-repeat;}
.PROPORTIONAL_SEGMENTS_FROM_EQUAL_RATIOS{background: url('sprite_theorems.svg#svgView(viewBox(270,405,45,45))') no-repeat;}
.PYTHAGORAS{background: url('sprite_theorems.svg#svgView(viewBox(315,405,45,45))') no-repeat;}
.RIGHT_ANGLE_FROM_ALTITUDE{background: url('sprite_theorems.svg#svgView(viewBox(360,405,45,45))') no-repeat;}
.BISECTOR_FROM_MEDIAN{background: url('sprite_theorems.svg#svgView(viewBox(405,405,45,45))') no-repeat;}
.EQUIVALENT_SEGMENTS_FROM_MEDIAN{background: url('sprite_theorems.svg#svgView(viewBox(450,405,45,45))') no-repeat;}
.BISECTOR_FROM_PERPENDICULAR_MEDI AN{background: url('sprite_theorems.svg#svgView(viewBox(495,405,45,45))') no-repeat;}
.RIGHT_ANGLE_FROM_PERPENDICULAR_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(540,405,45,45))') no-repeat;}
.BISECTOR_FROM_PERPENDICULAR_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(0,450,45,45))') no-repeat;}
.EQUIVALENT_SEGMENTS_FROM_PERPENDICULAR_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(45,450,45,45))') no-repeat;}
.PERPENDICULAR_FROM_PERPENDICULAR_BISECTOR{background: url('sprite_theorems.svg#svgView(viewBox(90,450,45,45))') no-repeat;}
.SEGMENT_RATIO_FROM_MEASUREMENTS{background: url('sprite_theorems.svg#svgView(viewBox(135,450,45,45))') no-repeat;}
.PERPENDICULAR_DIAGONALS_FROM_KITE{background: url('sprite_theorems.svg#svgView(viewBox(180,450,45,45))') no-repeat;}
.PARALLEL_OPPOSITE_SIDES_FROM_ISOS_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(225,450,45,45))') no-repeat;}
.CONGRUENT_ANGLES_FROM_THIRD_IN_TRIANGLES{background: url('sprite_theorems.svg#svgView(viewBox(270,450,45,45))') no-repeat;}
.TRAPEZOID_FROM_ISOSCELES_TRAPEZOID{background: url('sprite_theorems.svg#svgView(viewBox(315,450,45,45))') no-repeat;}
.CENTER_FROM_END_OF_RADIUS{background: url('sprite_theorems.svg#svgView(viewBox(360,450,45,45))') no-repeat;}
.CHORD_FROM_SEGMENT_AND_CIRCLE{background: url('sprite_theorems.svg#svgView(viewBox(405,450,45,45))') no-repeat;}
.SECANT_FROM _POINT_SEGMENT_AND_ CIRCLE{background: url('sprite_theorems.svg#svgView(viewBox(450,450,45,45))') no-repeat;}
.DIAMETER_FROM_POINT_SEGMEN_AND_C IRCLE{background: url('sprite_theorems.svg#svgView(viewBox(495,450,45,45))') no-repeat;}
.RADIUS_FROM_POINT_SEGMENT_AND_CIRCLE{background: url('sprite_theorems.svg#svgView(viewBox(540,450,45,45))') no-repeat;}
.CENTER_FROM_TWO_DIAMETERS{background: url('sprite_theorems.svg#svgView(viewBox(0,495,45,45))') no-repeat;}
.empty-theorem{background: url('sprite_theorems.svg#svgView(viewBox(540,495,45,45))') no-repeat;}